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When gel and glass meet: A mechanism for multistep relaxation
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We use computer simulations to study the dynamics of a physical gel at high densities where gelation and
the glass transition interfere. We report and provide detailed physical understanding of complex relaxation
patterns for time-correlation functions which generically decay in a three-step process. For certain combina-
tions of parameters we find logarithmic decays of the correlators and subdiffusive particle motion.
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Various types of phase transformations in disordered ma-
terials have been described in the literature, such as percola-
tion, gelation, or glass transition [1]. It is thus natural to seek
novel behaviors emerging from the competition between
these different transformations. Recently, the structure and
dynamics of mixtures of large and small colloidal particles
[2,3] of materials with competing length scales [4,5] or in-
teractions [6—8] have been studied using a variety of theo-
retical and experimental techniques. The motivation to carry
out these investigations is of fundamental as well as practical
nature since new phenomena can be discovered and disor-
dered materials with novel properties are created.

Of particular interest are the similarities, differences, and
competition between gelation and glass transition which can
be observed in a number of soft materials [9-12]. Previous
work focused on particle systems with a hard-core repulsion
competing with a very short-range attraction [6], which can
be realized experimentally in colloid-polymer mixtures [11].
Such systems can be handled theoretically using liquid state
theory for the structure, and mode-coupling theory for the
dynamics, which then yields detailed predictions for the lo-
cation and nature of the dynamic transitions [6,13]. Noner-
godic phases are predicted either upon compression (glass
physics) or upon increasing the attraction strength (gelation),
with a peculiar dynamical behavior (logarithmic decay of
time-correlation functions and subdiffusive particle displace-
ments) in the region of parameter space where these transi-
tion lines intersect. A number of confirmations have been
obtained [6,10-12,14-16].

However, the competition between gel and glass is not
restricted to sticky particles, and an exploration of a larger
class of materials is needed. Additionally, a detailed physical
understanding of the competition between these two forms of
dynamic arrest has not been achieved. Also, since mode-
coupling singularities are generically avoided in real materi-
als [1], it is important to explore the robustness or generality
of the above results [17], and the possible deviations or new
processes which might emerge when a larger class of mate-
rials is considered.

We explore these important open directions using simula-
tions of a model system that is a coarse-grained representa-
tion [ 18] of a transient gel which has been studied in experi-
ments [19]. In this system an equilibrium low-density gel is
obtained by adding telechelic polymers to an oil-in-water
microemulsion. Since the polymer end groups are hydropho-
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bic, the polymers effectively act as (attractive) bridges be-
tween the oil droplets they connect, whose strength, length
scale and typical lifetime can be controlled at will. Denoting
by C;; the number of polymers connecting droplets i and j,
we have established in Refs. [18,20] that the following inter-
action is an effective coarse-grained representation of this
ternary system:

14
g;i
V= E (4) + 612 CijVFENE(Vij) + 602 Cij. (1)
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The first term is a soft repulsion acting between bare oil
droplets, where 0;;=(0;+0;)/2, 0; is the diameter of droplet
i, and r;; is the distance between droplet centers. The second
term describes the entropic attraction induced by the telech-
elic polymers, which has the standard “FENE” form (finitely
extensible nonlinear elastic potential) known for polymers
[21], Veeng=In(1-(r;j— 0',7)2/€2), and accounts for the maxi-
mal extension € of the polymers. The last term introduces the
energy penalty €, for polymers that have both end groups in
the same droplet. The most drastic approximation of model
(1) is the description of the polymers as “bonds” between the
droplets, which is justified whenever the typical bond life-
time is much larger than the time scale for polymer dynamics
in the solvent [19]. To describe the dynamics of the system,
we combine molecular dynamics to propagate the droplets
with interaction (1) to local Monte Carlo moves with Me-
tropolis acceptance rates 7y, min[1,exp(~AV/kgT)] to up-
date the polymer connectivity matrix C; [18,20]. Thus 7y is
the time scale governing the renewal of the polymer network
topology. In order to prevent crystallization we use a poly-
disperse emulsion with a flat distribution of particle sizes in
the range o; €[0.75,1.25].

For moderate volume fraction, ¢p=0.2, the model behaves
as an equilibrium transient gel with nontrivial dynamics [18]
if R, the fraction of polymers per oil droplet, is larger than
the percolation threshold R,~2. In this case, the system is
viscoelastic with a relaxation time set by the bond lifetime
Tink» @and mechanical strength set by R, as illustrated in Fig.
I(a) where we show the time dependence of the self-
intermediate scattering function,
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FIG. 1. (Color online) Time dependence of F,(q,t) for g=6.0.
(a) Gelation at ¢=0.5, 7j,=10?, and increasing R. (b) Glass tran-
sition at R=0 and increasing ¢.
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across percolation for ¢=0.5 (¢=6.0, near the main peak in
the static structure factor). A two-step decay is observed with
a plateau height controlled by R, and a slow decay at times
t= 7. These features reflect the vibrations of an increas-
ingly stiffer network of connected particles, followed by a
slow reorganization of the transient network. In the opposite
limit where R=0 and the volume fraction ¢ becomes large,
the microemulsion becomes a standard dense glass [Fig.
1(b)]. Here, the two-step decay stems from particle vibra-
tions within the transient cage formed by the neighbors, fol-
lowed by slow structural relaxation. As usual in this situa-
tion, the relaxation time increases dramatically with ¢ while
the plateau height remains constant [1].

Our goal in this work is to explore the competition be-
tween the two well-documented phenomena illustrated in
Fig. 1. The space of control parameters is large, so we fix
[18]{€=3.5, kzT=¢€y=1, €=50} and vary {¢,R, 7ji,,.}. We
successively describe the effect of (i) increasing the density
of an equilibrium gel, (ii) adding attractive interactions to a
viscous liquid close to the glass transition, and (iii) changing
the bond lifetime of a system close to dynamic arrest to
estimate the relative importance of bonding and steric hin-
drance for the relaxation.

We start our exploration in Fig. 2 which shows the evo-
lution of the equilibrium gel dynamics, R=8, 7, =107, as it
is compressed from ¢=0.5 toward the glass transition. Con-
trary to the extreme cases shown in Fig. 1, here both the
relaxation time and the plateau height increase simulta-
neously. Thus these results are not explained by gelation or
the glass transition alone but truly result from the nontrivial
effect of their competition. This is directly demonstrated by
increasing, for the same state points, the bond lifetime 7, to
a very large value. For ¢=0.5, the correlator quickly decays
to the plateau and then becomes completely arrested, show-
ing that at low density only the transient network physics is
at play. At larger density, ¢=0.60 and 0.65, a very slow
decay toward a plateau is observed. In particular, for
¢$=0.65 the data follow a nearly logarithmic decay over
about 5 decades in time, a behavior which is seen neither for
the gel nor the glass alone. This means that the elastic relax-
ation of the network is considerably slowed down by crowd-
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FIG. 2. (Color online) Compressing an equilibrium transient gel
with R=8 toward the glass transition. The symbols are for
Tink=10% and the full lines are for frozen bonds, 7j;;=%. The dy-
namical evolution is a nontrivial mixture of both gelation and glass
transition with a logarithmic decay toward a plateau at intermediate
volume fraction.

ing effects. Interestingly, qualitatively similar experimental
observations have recently been reported in micelles [12]
and attractive nanoparticles [16]. At even larger volume frac-
tions, ¢=0.7, F,(q,t) decays again in a two-step process, but
the slow decay is now controlled both by the bond lifetime
(as in gels) and by the density (as glassy liquids). Although
the dynamics at large ¢ and R is a two-step process similar
to the one of the glassy fluid at R=0, the effect of 7y, on the
second decay establishes its very different nature. While
crowding alone is responsible for the slow dynamics near
R=0, bond lifetime and network reorganization control the
dynamics at large R. This physical distinction is reminiscent
of the “bonded glass” and “repulsive glass” nomenclature
introduced for attractive colloids [22]. It is between these
two regimes that multistep relaxations can be observed.

Alternatively, gel and glass can meet by increasing the
attraction in dense systems, as usually done in polymer-
colloid mixtures [11,14]. Note that in our model we can in-
crease the attraction between droplets, R, without simulta-
neously increasing the bond lifetime 7, while these
quantities are tightly coupled in attractive colloids
[11,14,15]. This allows us to disentangle static from dynamic
effects. In Fig. 3 we show the effect of increasing R in a
dense fluid at ¢=0.61 using a constant bond lifetime
Tink=10%. We show both the evolution of F(g,t), and of the
mean-squared displacement,
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As for the low-density system in Fig. 1, increasing the attrac-
tive interaction allows the system to cross the percolation
line and to become viscoelastic; i.e., Fy(g,?) decays in two
steps. However, the proximity of the glass transition makes
the dynamic evolution more complex, as this produces, at
intermediate values of R=5-7 a very slow decay of the
time-correlation function, which can be empirically de-
scribed by a logarithmic decay [Fig. 3(a)]. This behavior
resembles the ones reported in numerical work for colloids
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FIG. 3. (Color online) Effect of increasing the attractive inter-
actions, R, in a dense repulsive fluid, ¢=0.61, for a finite bond
lifetime, 7j;,=10% on (a) F,(¢,7) and (b) A%(z). For intermediate R
values, a nearly logarithmic time decay of F(q,?) is observed (sym-
bols), associated with a subdiffusive behavior of single-particle
displacements.

with short-range attraction [14,15]. The mean-squared dis-
placement also evidences deviations from a simple two-step
process, as particle displacements appear to be transiently
subdiffusive at those intermediate R where logarithmic decay
is observed. Again this behavior cannot be accounted for by
a simple “superposition” of gel and glass dynamics.

We explore further these nontrivial dynamical features
making use of the flexibility offered by the present model to
change attraction and bond lifetime independently. In Fig. 4,
we show the effect of increasing 7y, on F(¢,1) and A%(z) for
constant values of R=6.3 and ¢=0.61, i.e., where the loga-
rithmic decay was most prominent in Fig. 3. We now realize
that the logarithmic decay seen for 7y, =107 is in fact a very
specific instance of a more generic three-step decay of time-
correlation functions which reflects the double localization of
the particles within their cages and within the transient par-
ticle network. This three-step process is also clear from the
behavior of the mean-squared displacements (inset of Fig. 4),
which reveals the existence of two length scales controlling
the dynamics of this system. A first plateau is observed for
A?=~0.1, which corresponds to the typical cage size in repul-
sive glasses [1], and a second plateau is observed near
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FIG. 4. (Color online) Increasing the bond lifetime 7, from 1
to 10* at ¢=0.61 and R=6.3 produces a crossover from nearly
logarithmic (dashed line) to a three-step process when time scales
are well separated. The inset shows the mean-squared displacement
for the same parameters, revealing the existence of the distinct
length scales (dashed lines) controlling the dynamics.
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FIG. 5. (Color online) Phase diagram for 7j;,,=1.0: Coexistence
region (<), sol (O) and gel ([J) phases, and measured glass line
(A), determined from a Vogel-Fulcher fit of the relaxation time.
Also shown are the iso-7 lines (V) for 7=10,30,102,...,10%

A2=~=(.5, which corresponds to the localization of the particle
due to the presence of the percolating polymer network [18].
The logarithmic decay is only observed if a nongeneric com-
bination of time scales and length scales combines both slow
processes in a single, nearly logarithmic one. In fact our data
suggest that the generic situation should be the occurrence of
a three-step process corresponding to well-separated bond/
cage relaxation. To the best of our knowledge, there is no
experimental report of such a three-step decay of time-
correlation function. We suggest that compressing the tran-
sient gel system of Ref. [19] is a possible route to such
observations.

We now summarize our findings in a phase diagram in
Fig. 5. The low-density part, ¢»<<0.2, was described earlier
[18]. It contains a sol phase if ¢ and R are small, and a phase
separated region when attraction is increased at low ¢. There
is a large region (currently explored in experiments [19,23])
where a homogeneous equilibrium transient gel is formed. In
the present work we have explored the interplay between the
glass transition at large volume fraction and gelation at large
R, where we observed interesting dynamical phenomena.
The isorelaxation-time lines reported in Fig. 5, obtained for
Tiink= 1.0 and defined by F,(g,7)=0.03, show that the dy-
namics slows down both by increasing ¢ or R [24]. In the
region where both R and ¢ act as a source for slow dynamics
we generically obtain a three-step relaxation process, which
produces for specific combinations of R, ¢, and 7y, a loga-
rithmic decay toward a plateau followed by a slower decay,
as in Fig. 2, or a fully logarithmic decay as in Fig. 3. The
present model thus captures a broad range of behaviors, and
also predicts new types of relaxations.

The phase diagram in Fig. 5 shows that, in the gel phase,
ergodic behavior is found even if the attraction gets very
large. For ¢=0.5, we have done simulations up to R=50 and
still found ergodic behavior: the relaxation time increasing
smoothly with R. Thus we find no evidence of an “ideal” gel
phase, as predicted theoretically for attractive particles
[6,13,25], although of course the relaxation time can get very
large if both R and 7y, increase. This suggests a fundamen-
tal difference between gelation and glass transition because
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in (fragile) glass-forming materials, the predicted mode-
coupling singularity is also avoided, but it is believed to be
replaced by a truly divergent time scale [1]. As suggested
also from simulations of particles with attractive patches [8],
gels could be the analog of Arrhenius (strong) glasses with
no finite temperature singularity.

One important finding of our study is the prediction of a
generic three-step decay of time-correlation functions, which
has not yet been directly observed experimentally. As shown
in Fig. 4, this requires the existence of two distinct length
scales and well-separated time scales for cage/bond relax-
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ation. We suggest that the observation of a two-step process
for yielding in a sheared colloid-polymer mixture [26] might
be a rheological analog of Fig. 4, which certainly calls for
further investigations. Even more complex relaxation dy-
namics could potentially emerge in transient gels made with
polymer mixtures having distinct length scales, thus opening
the door to the creation of new materials.
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